THE THEORY OF GRAVITY PROPULSION Download Free

Author: Larry James
Number of Pages: 172 pages
Published Date: 06 Mar 2003
Publisher: AUTHORHOUSE
Publication Country: Bloomington, United States
Language: English
ISBN: 9781403394248
Download Link: CLICK HERE
Consider the higher magnet, within the higher than example, control higher than the lower magnet by suggests that of strings secured in a very horizontal manner so the magnet will move vertically. Like poles face. Now allow us to raise the higher magnet and so unleash it. The higher magnet can fall past the balance purpose due to its momentum, mass times speed, and continue till the force is larger than the attractive force and the decreasing momentum.

Again it moves on the far side the balance purpose thanks to momentum, etc. It can so oscillate with decreasing amplitude till it settles stationary within the balance purpose. We will take into account that the antigravity field encompasses a supply below the suspended object and the sphere diminishes with distance from the source fittingly. When we have a tendency to unleash the mass it falls since the attractive force result on the mass is larger than the antigravitational field at this time.

What happens once the mass reaches the balance point? It stops short. A attractive force and antigravitational field act 4D to 3D and penetrate entirely any mass. There is not any momentum since the anti gravitational field and therefore the field act outright on all atoms and their nuclei. At the balance purpose, the upward thrust on the item from the antigravity is adequate the downward thrust of gravity.

What kind would this matter take? AntigravityPropulsion systems. But what regarding atoms? Would matter have positive particles revolving around a negative nucleus the opposite of our atoms. The charged nucleus at the centre of the atom could be a white hole, which implies energy is coming back into our third dimension, whereas electrons have properties kind of like black holes—energy spiralling inwards into their centres and out of the third dimension. Let us currently gift 3 wide totally different principles of realistic antigravity in increasing order of sophistication and effectiveness, and follow this with 3 various examples:

The third system that we have a tendency to shall describe satisfies the condition for the final word orbiter propulsion methodology and is one that utilises the principle of attenuation or resonance with the attractive force oscillation of the world or any cosmic body.

In this case the charges will be impelled towards each other by this vacuum stress gradient FIG. A moving charge generates a magnetic vector potential in its direction of movement. This vector potential is equivalent to the hydrodynamic velocity of the vacuum Maxwell. Magnetic forces can easily be explained in hydrodynamic terms has interactions of the generated vector potentials. Hydrodynamic currents attract if they are in the same direction and repel if they are in opposite directions.

In this way, the attraction and repulsion force between currents and magnets can be explained in hydrodynamic terms. On a more fundamental level, this force can be attributed to how the interacting vector potentials alter the vacuum stresses. The magnetic vector potential A is always in the direction of the current I. In the case of two steady state parallel currents in the same direction, the vector potential of both currents is in the same...
direction is not opposed.

This will lower the vacuum density and tension between the two currents, generating an attraction force because the vacuum density is higher outside the currents FIG. If the currents are parallel but in opposite directions, then the vector potential will tend to cancel between the currents, due to the oppositely directed vectors.

This oppositely directed field will increase the vacuum density and tension between the currents and the vacuum antigravity force generated between them will be higher than outside, therefore the currents will repel each other FIG.

This forms a physical basis for the interpretation of magnetic forces in terms of vacuum stresses FIG. The important point here is that electromagnetic forces alter the state of tension of the vacuum which is reflected as attraction or repulsion, according to the vacuum density tension gradient.

On this stance, the gravitational force can be attributed to vacuum stresses as well. We just have to look at how matter is made.

It contains a concentration of positive charge in the center surrounded by circulating electrons with negative charge. If we reconsider the earlier explanation for the electrostatic forces we see that attracting charges diminish the local vacuum stress tension between them.

Therefore, atoms will electrically induce a lower vacuum density inside their structure, generating an attracting gravitational force towards them due to the surrounding vacuum stress gradient FIG. The lower vacuum density in atoms also implies the existence of less electromagnetic allowed states, like also observed in the Casimir effect experiment, that are known to exist for the electrons that surround the nucleus.

Atoms also contain opposing magnetic fields from the spin and movement of the charged particles that are responsible for the slight decrease in weight observed between an atom and its individual constituents. This happens because the opposing magnetism in atoms increases the vacuum stress but since magnetism has a much lower strength, in this case, than the existing electric fields, an attraction force towards atoms will be the resulting force.

It is known that a plasma does not allow the propagation of electromagnetic waves until a certain cutoff frequency is surpassed that depends on the plasma density and thickness Laroussi and Anderson. Therefore, the plasma is doing exactly what the parallel conductor plates in the Casimir effect did FIG. The vacuum density inside the plasma will also be lower, and it will induce a force on a nearby mass towards the plasma because of the vacuum stress gradient.

This means that if we create a very high density plasma 8 density and thickness have to be optimized , we will generate a very strong gravitational pull towards this plasma FIG. The plasma gravitational pull can be easily understood if we note that the plasma is made of a very high density charge concentration of both polarities.

And, as explained in relation to FIG. Until now, the theory presented here could explain in simple terms the physical origin of electromagnetic and gravitational forces. They all derive from gradient stresses in the vacuum created by opposing or non-opposing electromagnetic fields. There exists a simple experiment that proves further the gravitational connection between vacuum stresses and electromagnetic interactions. This experiment was initially mentioned by Boyd Bushman personal communication , a retired engineer from Lockheed Martin.

He repeated Galileo’s experiment of dropping two masses side by side and measured the time they took to fall. Boyd verified that when we drop two opposing magnets in one container and normal matter in a second container of equal geometry , the opposing magnets arrived latter than the normal mass.

This experiment violates the equivalence principle and proves the relation between opposing fields, vacuum stresses and gravitational interactions. It can be easily verified by dropping opposing magnets trough coils connected to an oscilloscope, and then measure the falling time and compare to the falling time of simple magnets.

The basic theory presented until this point will be the basis for the experimental ideas in antigravity propulsion proposed henceforth. The present invention will now be described in detail, without a limited character and using preferred examples, presented in the accompanying drawings, where:

We will now proceed with the description of the preferred embodiments of this invention which are illustrated in the accompanying figures. Like numerals in these figures correspond to corresponding parts in the different embodiments.

We start by noting that Bushman’s magnetic beam patent can be used for antigravity propulsion. Unfortunately, this fact is not mentioned in his patent where he only, mentions the production of a magnetic beam that can be rotated or directed, which is capable of generating higher magnetic fields for propulsion use in electric motors or levitating magnetic trains and is also capable to perform charge transfer.

His concept is represented in FIG. It consists of a geometric arrangement of opposing pairs of magnets 9 - 10 and 11 - 12 and unopposed magnet 13 any number of magnets can be used.

The letters N and S represent respectively the magnetic north and south pole. As we saw earlier, opposing fields increase the stress of the vacuum generating antigravity forces. This arrangement will generate a high vacuum stress between the opposing magnets, because the vector potential of the magnets is in opposition, which will induce gravitational repulsion from the area where the stress is highest.

If a coil 14 is wrapped around the magnet setup 15 surrounding each magnet, the magnet setup or a few of the magnets , then the changing magnetic fields generated can be greatly increased, by exciting the coils with changing oscillating, pulsing or any shape electromagnetic signals. This
will augment the magnetic vector potential strength of the opposing fields and consequently increase the vacuum stress that will induce strong antigravity forces F on nearby masses FIG.

A setup like this could be used for propulsion with any number of units disposed around the periphery of the craft in order to generate directional forces. This setup is auto propelled because of its asymmetry of mass. Since there is more mass to one side the unopposed magnet, it will be repelled from the higher vacuum stress zone. Bushman says that when the magnet arrangement is excited by a coil at ultraviolet frequencies it generates alternating magnetic fields with the equivalent strength of an electromagnetic pulse capable to destroy electronic components in a radius of several miles.

The intensity of the generated magnetic field oscillations will increase with the frequency applied to the coils surrounding the magnets. This setup is ultra efficient for propulsion because of the extremely high opposing magnetic fields that can be created when the electromagnetic pulse is used.

By using a higher excitation frequency we will generate higher opposing magnetic vector potential fields which will have a higher interaction with the vacuum by increasing its stress. In order to increase vacuum interaction and stress a number of different excitation processes can be used.

Besides the use of symmetric or asymmetric waveforms sinusoidal, triangular, squared, pulsed and others at a single frequency or at multiple simultaneous frequencies, any modulation can be applied to the carrier wave frequency or amplitude modulation, were the arrangement of magnets 15 can be made to generate a rotating magnetic field or not.

Even the frequency of the exciting wave can be changed continuously chirped excitation linearly or non-linearly, with or without any type of modulation. Other excitations may include white noise, pink noise, or any type of caotic electromagnetic excitation. The purpose of all these different excitation systems and frequencies is the possibility to excite and act on more vacuum zero point energy modes and frequencies according to the frequency spectrum generated by the oscillating magnetic poles that are excited by the coils.

The antigravity force generated by this setup would be incredible with the advantage that the occupants would not feel any inertia force when being repelled by the stressed vacuum because they would be propelled directly by space.

As is known, masses in free fall in a gravitational field do not feel inertia, because they are being moved by space itself and not against space. When we excite these magnets with alternating current AC they create a magnetic field change with time, but the pole of the magnet will remain the same.

Therefore it creates a time varying pulsed magnetic field or pole with symmetric rising and falling times. If instead we use an asymmetric alternated or asymmetric pulsed excitation asymmetric sawtooth wave, for example to the coils, then the rising and falling times of the magnetic field of the magnets will be asymmetric.

This will create a new effect, developing another force on space itself, since time changing magnetic fields generate time changing electric fields and these will induce a new another changing magnetic field in the space surrounding the setup. This is represented in FIG. In this figure, 19 stands for the new induced magnetic field in space which always has the direction provided by the arrows 16, 17 and Therefore we have three different possible situations according to the type of excitation AC or pulsed—symmetric or asymmetric and related to the difference between the rise and fall times of the exciting source, which will determine the symmetric or asymmetric variation of the magnetic field of the magnets.

In the case of situation 16, the magnet setup 9, 10 and 13 will be further repelled by this space induced opposed magnetic field, where a classical explanation repulsion of like poles is sufficient to understand the propulsive repulsion force.

Situation 17 corresponds to the discussion related to FIG. The magnets 20 can also be placed side by side in repulsion or attraction. And FIG. When the magnetic vector potentials are in opposition any external mass will be repelled from that area, and when they are in attraction any mass would also be attracted. Like before, this arrangement will be auto-propelled to the right due to its mass asymmetry. Any experimental setup that generates opposing and non-opposing fields respectively increases or decreases the vacuum stresses generating mechanical forces on masses in response to these vacuum density gradients.

Therefore a multitude of geometrical arrangements can be used to generate antigravity forces, with a body of mass always being repelled from the high vacuum stress towards the low vacuum stress. This concept is illustrated in FIG. When we oppose all magnets, like in FIGS. The only figures needing more explanation are FIGS.

In FIG. Therefore, we will induce one magnetic pole that is in opposition at the center and induce the other pole at both extremities. The changing currents will also induce opposing induced electric fields that repel each other. We can use a coil in two different configurations: in the first case that we have just discussed the wires from the center to the periphery of the coil go in opposite directions anti-parallel, like when we just connect a wire to the center of a normal coil.

In the second case the wires from the center to the periphery of the coil go instead in the same direction parallel. In the parallel second case we generate currents in the same direction and phase, and in the anti-parallel case we generate currents in opposite directions from the center to the periphery.

The rotational direction of the coil wires between these two coils is opposite to the other, in the first case they are in opposite directions and in the second case, in the same direction. The generated forces will also be opposite. In the first case the opposed currents will generate a gravitational repulsion, and in the second case the attracting currents will generate a gravitational attraction.

Our preferential embodiment is the coil used in the first case, although any coil may be used according to the desired purpose. If wished one can
use a greater density or concentration of turns of coil wire on one of the sides of the coil. We may use only the center wire if we excite coil 21 with Tesla coils or the Avramenko’s longitudinal system.

The effect increases with increasing frequency and current. If we excite this coil the preferential embodiment in an asymmetric way by displacing the center wire to one side Fig. Again, one can use more turns of coil wire on one of the sides of the coil. This coil can be very small or the size of a whole spaceship involving the outside of the spaceship or a smaller propulsion unit.

Coil 21 can be an air core coil or it may have a ferromagnetic core or any type of magnet s, which are surrounded by the coils, in order to increase efficiency. Please note that, although the coil s in Figs. Another variation to the setup using this coil would be to wrap around coil 21 another coil or coils not represented that would generate opposed currents to coil 21 in a passive induction by Lenz law in response to currents in coil 21 way or in an active by direct excitation of a power source way.

This happens because the high vacuum stress generated by these propulsion units repels the mass of our planet also. If the symmetric systems embodiments in Fig. An asymmetry in the surrounding stress gradient or mass distribution is needed for directional propulsion.

In this case each propulsion unit is mechanically fixed to a mass 6 so that when they are excited with a power source a repulsion force will be generated in the vacuum, which will act on the surrounding mass 6 that will also transport the propulsion unit with it. Since these propulsion units repel all mass, generally they have to be used at the extremities of the volume to be propelled so that the mass is concentrated in the direction that the force is to be produced.

If some of these units have attracting fields instead of opposing, then an opposite directed force would result mass would be attracted to these areas. In order to achieve directional control, several propulsion units have to be distributed along the periphery, as illustrated in Fig. These are just a few examples and are not limiting in nature. Each represented section can be energized independently in order to vector the propulsion force.

If desired, a grid of repelling magnets wrapped in coils can be used as a propulsion unit with greater surface area Fig.

The coils 14 illustrated are wrapped around magnets or ferromagnetic cores The coils that excite magnets can also be made of fiber optic, instead of conducting metal. One can always choose to use repelling or attracting forces to vector propulsion.

The use of repulsion forces has certain advantages like repelling also the surrounding atmosphere in operation while on a planet. When traveling, repulsion fields would be generated in the front in order to reduce friction and interaction with the atmosphere; and stronger repulsive fields would have to be generated in the backward section in order to achieve forward propulsion. Other simpler alternative would be to use only the repulsion fields at the back which would also repel the atmosphere in the forward part of the vessel.

The use of a ferromagnetic material will increase the magnetic vector potential generated by the currents in the electromagnetic coils thereby augmenting the effect, but the excitation of magnets by coils metallic conductors, fiber optic conductors, or plasma conductors is more efficient due to the electromagnetic pulse that is generated when the excitation of the magnet by the coil is at high frequencies like, for example, ultraviolet frequencies.

This repulsive interaction will increase the vacuum stress in that area, generating an antigravity force that will act on any nearby mass. In all these embodiments, element 22 may be superconductor or not, or may be charged or not, and may rotate or not. Like before, in all these embodiments, element 22 may be superconductor or not, or may be charged or not, and may rotate or not.

Since the magnetic vector potential of coils is augmented by materials of greater magnetic permeability, it is advantageous to use such materials and impose opposed or non-opposed vector potentials. The coil and the respective cores can be cylindrical, toroidal, rectangular, conical or any other shape Figs. An asymmetric shape would also induce a force on the system.

But the primary interest here is to generate vacuum stress gradients to apply on surrounding masses for propulsion and control. We can use straight cylindrical coils or toroidal coils 24 near a flat Fig. In this case we can have symmetric Fig. These coils can be energized by dc, ac or pulsed currents. The coils can have an air core or preferentially a ferromagnetic or other core 23, that may also be any type of magnet s with any shape and cross section.

We could also have an element or coil 22 inside another coil 24 Fig. If coil 24 is excited with a changing current, then it will induce opposed currents in coil We can have several layers of coil s 22 and 24 interposed Fig. In a similar way, planes of parallel cylindrical coils can be used to create repulsive or attractive gravitational forces in surrounding masses.

If the currents and generated changing electric and magnetic fields in the coils are in opposite directions nearby, then a repelling force will be generated on nearby masses. These planes of coils are disposed in the periphery of the mass in order to induce directional movements through selective activation of the coils. We which to emphasize that, whenever we mention the induction or interaction between opposed currents, the opposing force is not only provided by the currents that are in opposition but also by the interaction of the induced electric fields generated by those changing currents changing vector potential.

That is, the opposing force also contains an electric repulsion or attraction interaction component, and not only a magnetic factor. This is an important remark since we can have an important repulsion force between changing currents without having to generate necessarily big currents that could heat too much the material of the used conductor s.

This understanding is employed in all embodiments in this patent using interactions between changing currents. Coil 25 is active and excited by AC or pulsed currents. Or alternatively, coil 26 can also be active and excited by a power source in order to generate opposed currents to the currents.
of coil In like manner, different embodiments of this concept are depicted in FIGS. If element 24 is adjusted to a curved conducting surface 22 , we have the situation depicted in FIG.

As before, element 24 is active and 22 is passive or eventually also active. Alternatively we can have a circular coil 24 with or without a magnetic or ferromagnetic core 23 , which surrounds a metallic conducting plate or coil 22 , like in FIG. Element 22 can be a circular ring or a circular coil, active or passive, like in FIG.

The central element 22 can also be asymmetric FIG. In this case, the opposed induced currents on the asymmetric element 22 will also be in opposition between themselves. Please note that the referred coils 24 or elements or arrangements of elements 23 surrounded by coils 24 in FIGS. In these last embodiments FIGS. We have or not a core of ferromagnetic material or simply a magnet s of any type 23 with a coil 24 wrapped around it from the inside or outside.

Element 23 will amplify the vector potential generated by the coil when it is excited by AC, or pulsed currents. When this vector potential changes around the coil s one or more 24 surrounding or involving from the inside or outside; or instead intermingle in the same plane a tubular conical, toroidal, oval, spherical, cylindrical or any other shape; hollow or not element 22 with the same properties referred to before, and connected or not to a power supply, the element s 22 when not connected to a power source will generate opposed induced currents, and opposing changing electric fields and also magnetic fields in response to any externally applied changing electromagnetic field or fields generated by coil or coils. Element s 22 when connected to a power source will generate opposed induced currents and opposing changing electric fields and also magnetic fields, in relation to the changing electromagnetic field or fields generated by coil or coils. These opposing fields will generate antigravity forces that can be used to vector propulsion as discussed before.

In all these embodiments, either or both coil or coils 22 and 24 can be formed by a tubular coil material of any shape that can allow the presence of a conducting plasma inside. The element 23 can be hollow as shown in FIG. Instead of a metallic tube 22 around coil 24 we can have an active or passive excited or not by a power source, respectively coil 22, as in FIG.

Or we can have a coil 24 surrounding from the inside or outside element 22 FIG. Instead of surrounding coil s 24 , coil s or element s 22 active or passive can involve side, by side or intermingle coil 24 in the same plane as shown in FIG.

Coil 22 can also surround from the inside or outside coil 24 as in FIG. Passive or active element 22 can be a solid metal with a toroidal shape like in FIG. Openings 28 can be introduced where desired FIG. These windows can be made of any transparent material, including transparent metals, glass, plastic, or other.

The coil 24 represented in these last figures can be more than one any number of coils parallel or perpendicular to one another and can be divided into different or independent sections. This coil or sets of different coils can be excited by AC, pulsed or rotating magnetic fields monophasic or poliphasic excitation.

As shown, the element 22 can be the external conducting surface of the craft or any internal element. Please note that in all the preceding setups where we have passive coils or metals 22 that transport current only because of induction due to an active coil 24 , can also be used has active coils with currents in opposition or not relative to the primary active coil in this case, we can use a DC, AC, pulsed or rotating field excitation of both coils.

Please note that, although in FIGS. In these embodiments, element 22 may be superconductor or not, or may be charged or not, and may rotate or not. Eventually, element 24 can have all the properties ascribed to element This repulsion force produced would increase the vacuum stress locally and the mass of the craft would be repelled by the high vacuum stresses generated by these units inducing propulsion of the whole system.

When using opposed currents trough the Lenz law we must remember that there is a frequency limit for which the metal will respond. It is known that metals become transparent to electromagnetic radiation above the ultraviolet range. If the excitation is at or above these frequencies then the metal would not generate opposed currents through the Lenz law.

Nevertheless, other systems described would continue to function at these frequencies, namely any asymmetric magnet arrangements excited by fiber optic at these higher frequencies which function independently of having or not a metallic conductor in front of the unpaired magnet.

Propulsion efficiency, increases with applied frequency and also with a larger spectrum or frequency bandwidth of the generated signals. A different configuration is depicted in FIG. The longitudinal section of this chamber is shown in FIG. There we can see a coil 24 surrounding a chamber 30 which contains a conducting diamagnetic or paramagnetic, or semi-conducting, or superconducting, or non-conducting, or any other conducting or ionizable material 31 , which can be in liquid, gas, vapor or plasma ionized form in any combination, like ionized mercury vapor, for example , that may be charged to any polarity or voltage with a static not changing or dynamic changing charge, or that may not be charged.

When the coil 24 is excited by AC, pulsed or rotating field, then element 31 will strongly respond with opposing currents due to the Lenz law. This will generate an antigravity force. As a way of example, this toroidal chamber 30 can occupy the whole outside perimeter of the craft s detailed in FIG. If the coil 24 in figure If the coil 24 is separated into different sections around the perimeter the toroidal chamber 30 can also be separated into different and independent sections like in FIG.

Alternatively, the coils 24 in FIG. It can also be used as a vertical mast in the craft s of FIG. A variation of this geometry is shown in FIG. This setup will also function as a propulsion unit. As a way of example, the use of three of these units at the bottom of a craft can be used to vector propulsion. The element 31 inside the chamber 30 can also be excited with a toroidal coil 24 FIG. If the coil 24 of FIG.

Since these opposing currents are propagating to the left, then a propagating antigravity wave will be emitted which will transmit a force to any
The third system that we have a tendency to shall describe satisfies the condition for the final word orbiter propulsion methodology and is one that with 3 various examples:

Let us currently gift 3 wide totally different principles of realistic antigravity in increasing order of sophistication and effectiveness, and follow this:

- Electrons have properties kind of like black holes—energy spiralling inwards into their centres and out of the third dimension.
- The charged nucleus at the centre of the atom could be a white hole, which implies energy is coming back into our third dimension, whereas the opposite of our atoms.
- What would matter have positive particles revolving around a negative nucleus the gravitational field and the field act outright on all atoms and their nuclei.

It stops short. A attractive force and antigravitational field act 4D to 3D and penetrate entirely any mass. There is not any momentum since the anti-antigravitational field at this time.

What happens once the mass reaches the balance point?

The source fittingly. When we have a tendency to unleash the mass it falls since the attractive force result on the mass is larger than the mass in its path. This can be used for propulsion purposes and also to transmit force to any mass at a distance. If mercury is used as the diamagnetic material, then it is of advantage to work at the temperature and pressure where the mercury behaves as a superconductor Kohno and Yao. Operation at these parameters would greatly increase the force effects.

Note that any other conducting material 31 diamagnetic, superconductor or other can be used. Although not mentioned before, all embodiments with passive or active elements 22 or 31 solid, liquid, vapor or plasma will generate opposed currents more efficiently if they are superconducting.

It is to be noticed that all the setups represented in FIG. If the coil 24 is excited with a directional pulsed, current like in FIG. Electromagnetic waves of propagating opposing fields or attracting fields will function as antigravity or gravity beams, respectively depending also on the sense and direction of the phase of the propagating wave.

A setup FIG. If element 22 is passive then it can only generate opposing fields. It functions as an antenna emitting vacuum stresses that can be attractive or repulsive. For example, if we have two conducting wires 24 and 22 are both active and excited and both carry a current were the current of one wire or of both wires is phase shifted in relation to the other, we can create propagating opposed or non-opposed fields, that would be emitted from the coils like radio waves are but with the property to exert forces in its propagating path according to the vacuum stress being propagated, and of the sense and direction of the phase of the propagated wave.

A traveling standing wave is generated by causing a slight phase difference between two phase cancelled carriers. By varying the phase by changing the phase of the exciting frequency ies or of the modulation of this frequency ies , the standing wave field can be caused to walk or move. In this manner it is possible to create fixed or moving points in space using one or more units that interfere in space that are attractive or repelling FIG.

Besides the use as an attractive or repelling beam, it can be used to create attractive or repelling points in space to cause a propelling force on a craft or mass 6 FIG. The use of this system while emitting a traveling wave of repulsion can be used to impart a constant force on any nearby mass a craft or any other mass 6 : being a possible application the extinguishing of fires.

Another embodiment of this concept FIG. Please note that, although not shown, the mentioned coils can be in any position around the magnet s : at the front, side, back or around the magnet s or the complete setup of magnets. In a different way FIG. Alternatively FIG. The generated field opposition will create an increased vacuum stress which will induce a repulsion force on nearby masses which can be used for propulsion purposes if the excitation is directional from right to left for example , and waves with fields in opposition are emitted in space, then masses on the propagation path will be subject to a directional force.

In an alternative way, one could also use two electrodes 35 and 36 of any conducting material, that are superconductive or not on the extremities of the chamber containing the material 31 , that is inside or outside a magnet 23 or 20 FIG. In these last two cases, the material 31 is excited by an electrical discharge using electrodes 35 and 36 FIG. If element 22 is passive then it can only generate opposing fields. It functions as an antenna emitting vacuum stresses that can be attractive or repulsive. For example, if we have two conducting wires 24 and 22 are both active and excited and both carry a current were the current of one wire or of both wires is phase shifted in relation to the other, we can create propagating opposed or non-opposed fields, that would be emitted from the coils like radio waves are but with the property to exert forces in its propagating path according to the vacuum stress being propagated, and of the sense and direction of the phase of the propagated wave.

A traveling standing wave is generated by causing a slight phase difference between two phase cancelled carriers. By varying the phase by changing the phase of the exciting frequency ies or of the modulation of this frequency ies , the standing wave field can be caused to walk or move. In this manner it is possible to create fixed or moving points in space using one or more units that interfere in space that are attractive or repelling FIG.

The Theory Of Gravity Propulsion Reviews

- Цуккини. Они держали ее что было сил, чтобы посадить меня в самолет. Сошня лихорадочно прогоняла текст на мониторе в обратном направлений и наконец нашла то, и Сьюзан поняла. Пять тысяч американских долларов. Стратмор мужественно - Цуккини. Они держали ее что было сил, чтобы посадить меня в самолет. Сошня лихорадочно прогоняла текст на мониторе в обратном направлений и наконец нашла то, и Сьюзан поняла. Пять тысяч американских долларов. Стратмор мужественно

About The Theory Of Gravity Propulsion Writer

Now allow us to raise the higher magnet and so unleash it. The higher magnet can fall past the balance purpose due to its momentum, mass times speed, and continue till the force is larger than the attractive force and the decreasing momentum. Again it moves on the far side the balance purpose thanks to momentum, etc. It can so oscillate with decreasing amplitude till it settles stationary within the balance purpose.

We will take into account that the antigravity field encompasses a supply below the suspended object and the sphere diminishes with distance from the source fittingly. When we have a tendency to unleash the mass it falls since the attractive force result on the mass is larger than the antigravitational field at this time. What happens once the mass reaches the balance point?

It stops short. A attractive force and antigravitational field act 4D to 3D and penetrate entirely any mass. There is not any momentum since the anti-gravitational field and therefore the field act outright on all atoms and their nuclei.

At the balance purpose, the upward thrust on the item from the antigravity is adequate the downward thrust of gravity. What kind would this matter take? AntigravityPropulsion systems. But what regarding atoms? Would matter have positive particles revolving around a negative nucleus the opposite of our atoms.

The charged nucleus at the centre of the atom could be a white hole, which implies energy is coming back into our third dimension, whereas electrons have properties kind of like black holes—energy spiralling inwards into their centres and out of the third dimension.

Let us currently gift 3 wide totally different principles of realistic antigravity in increasing order of sophistication and effectiveness, and follow this:

The third system that we have a tendency to shall describe satisfies the condition for the final word orbiter propulsion methodology and is one that
utilises the principle of attunement or resonance with the attractive force oscillation of the world or any cosmic body. This methodology is 4th-to-3rd dimensional and involves wave motion. The second system is additionally a real antigravity methodology that utilises management over attractive force nodes, which implies the field see web-site articles on superspace and gravity.

This methodology operates a lot of with 3rd-dimensional elements. Like "Warp Drives", this subject is also at the level of speculation, with some facets edging into the realm of science. The better news is that there is no science that says that gravity control is impossible. First, we do know that gravity and electromagnetism are linked phenomena. We are quite adept at controlling electromagnetic phenomena, so one can presume that such a connection might eventually lead to using our control of electromagnetism to control gravity.

Another way is through new theories from quantum mechanics that link gravity and inertia to something called "vacuum fluctuations. Historically, gravity has been studied in the general sense, but not very much from the point of view of seeking propulsion breakthroughs. Back to "Warp Drive, When?"

Free Download The Theory Of Gravity Propulsion PDF Book